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distribution of the sample covariance function is derived in the case that the
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in the infinite variance case (0 <64Pt 2), the sample correlation function is »
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autoregressive process. F—
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(1.3) was given by Kanter and Steiger (1974) and Hannan and Kanter (1977). They

proved that for any § > a,

2/S ) - o)) B 0

with a similar result holding for the least squares estimates of the parameters
in the AR(p) model. Yohai and Maronna (1977) also considered AR(p) processes and

1/

showed that n 2 (p(h) - p(h)) is bounded in probability provided the Zt's are

symmetrically distributed and E log+ IZtl < w, Of course if the Zt's have a finite

1/

variance then n 2(;(h) - p(h)) is asymptotically normal under mild restrictions

on the coefficlents {Cj} (cf. Anderson, 1971, p. 489).

In Section 2, the 1limit distribution of the sample covariance function is
derived for the case 2 < a < 4; In the special case, 2 < a < 4, the pfocess has
a finite variance but an infinite fourth moment. It turns out that, as in the
0 < a < 2 case, the limit behavior of the sample covariance function is determined
by the partial sums § Zi. We also consider in Section 2 the situation when Zi
belongs to the normai-iomain of attraction with an infinite wvariance.

The weak limit of the sample correlation function in the infinite variance
case (0 < a < 2) is considered in Section 4. It is shown that there exists a
slowly varying function at =, 'Iv..(-), such that nlla’{.(n) (; (h) - p(h)) converges in
distribution to the ratio of two independent stable random variables with indices a

and o/2 respectively. Whereas the asymptotic properties of the sample covariance

n
function are governed by the partial sums 2 Zi, the weak limit behavior of the

t=]l n
sample correlation function is determined by the vector of partial sums ( 2 Z%,
n n t=1
Z ZtZt+1’ .o X Zt zt+h)' In Section 3, we show that this sequence of

t=1 t=1
vector-valued random variables converges in distribution to a vector of independent

non-normal stable random variables. This result is proved using point process
techniques and ideas from extreme value theory.

A discussior of least squares estimates for AR(p) processes in this setting

-9




and some examples are presented in Section 5.

2. Sample covariance function

The aim of this section is to derive the weak limit of the sample covariance
function for the process {xt} satisfying (1.1) with 2 < a < 4. Assume

(2.1) X, = jZ_, ¢y 2, 4 with ,2..'°:

|<-
where the z, satisfies (1.2) and (1.3). Put a = inf{x: P(Izll > x) Z_n—l} and
define the sample covariance function by
R n
Y =3 ] X
t=1

¢t Xean» B2 0

The following proposition is the key step in evaluating the weak limit behavior

of v(h).

Proposition 2.1, If 2 < a < 4 and E Zt = 0, then for every positive integer h,

@2 a2aym - ] ] o cpy 250
tel 1=
Proof. We have
a_%( § X X f { c, c )
n oy ¢ t+h ] fmeer i "i+h t -1

-2
a " ( 2 -9
35 j+h t 1 t-]

t=1 1
-2 D
= - 1 .
*n tll 1;j °s €pm et Yz, _| <l H) (Zey Uzl < 2
-2

; 1 z .1
+ & tzl 15; ¢4 cj+h(zc-i [lzt_ilg_an] + t-3 [Izt_jl < an])
w1 Ly S Bt ey Miz | > e or 2l > 8,

o opel 14 t-1 n t-3 n

-2 5

Tna, ¥ i;j €4 cj+h

A+B+C+D

-u) .

n




T

P
where By " E Z 1[|Z | <al We shall show that A, B, C L, 0 and D+ O,

Define

zt,n -2, 1[[2 | < a 17 %

and we have

4

n
Var (A)= a; ) E(Z z z 2 ).

e=1 tel i#j Kyt °j+h ck c1+h t-i,n "t-j,n "s-k,n "s-¢,n

Since {Zt n, ™ < t < »} i{s for each n an 1iid sequence of zero mean random variables,
’ ’
the above expectation is zerounless {t-i, t-j} = {s-k, s-t)}. When this is the case,

the expectation is of the form

E22 22 = E 22 E 22

l1,n 2,n 1l,n 2,n
2 ool
< (E Z ['Z ' < an) On
h 2 o
where on E 22 I(IZ ‘ . Hence

. -4 4 T
O L gy el ol el

tledlegulleg paglleg crgan)
“ 2
=° 321 :Zl ((g leg Sag-cl ) ¥ (2 e 1+hts- t“(z !CJ*'h J4s-t e
y <4
=fat " l§|<n((z leg equeD? + (2 ey i+h+tl)(z legan ceas®
< 2@ le,)* na® o
- { i n n
For 2 < o < 4, ci has a finite limit and in the a = 2 case it {s slowly [

va.ying by Karamata's Theorem (Feller, 1971). So in either case o; is slowly
varying. Moreover, a, is regularly varying with index l/a which together with the

slow variation of o; implies n 3;4 o: + 0 as n-+ =, Thus, Var(A) -~ 0 as desired. '

L
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As for the term B, we have

-2
A ElBl <208 [ul (§ ley1? Elz,| lt!zll <a]

<2 le,D%Elz)] na® Ju ]
i

. a-l
Since E Z_ = 0 by assumption, !unl E z 1”21' S an]l < E)zlf 1 ~=a /n

N
(lzll > a ]

by Karamata's Theorem. Hence n a;z ]unl +0asn-+w,

E Next
E[C| <n 3;2 (§ le,D2Elz, 2, 1”21, > a_or [2,] > a]
, £2n a;2<§ le;1)2E] 2, Elzllltlzll > a ]
+ 0
by Karamata's Theorem as for B. Finally, D = O(n a;z ug) + 0 since for B we have
ii already proved n a;z ]unl + 0 and this completes the proof, []

For a > 2, define

Y(h) - COV(Xt, X )

t+h

i o
= ( C, Cuyy) ¢ 02
where g2 = Var(zt). The next theorem gives the main result of this section.

Here and in what follows, convergence in distribution is denoted by "»'".

)
Theorem 2.2. Suppose {Xt} 18 given by (2.1) where {Zt} satisfies (1.2) and (1.3)
with 2 < a < 4, 1fi E z, = 0, then for any positive integer 2
_ -2, 2
2.3) (na“(y(h) - b ),Oj_hf_l)as-(ZC,Zc c+1,...,Xc.c+ﬁ) 1
| B n h,n 3 hj 3 h| h| 3 i’} - 4
where S is a stable random variable with index a/2 and bh,n = 12-4» N ci+h5221 l[lzllian], :
) 0 < h<f. Moreover, 1if 2 < o < 4, then
@.8) (e (M -y@), 0 h <) = (S = 2D, ..uy v/ |
)
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Proof. By Theorem 4.1 in Davis and Resnick (1984),
’ 2§ m & 2) » §
a c, ¢ (z -cl) » c, ¢ S for allh >0
n n tm] im—w 11 t-1 n -0 i "i4h

where 02 = E z 1[|Z l <a ] and S is a stable random variable with index a/2.

- From the proof of this same theorem, we have for any positive integer %

n n
2 - g2 2 - g2
o (tzl AN :21 Z ¢g Sy gy = 9R)s oo tgl § ey Sy By ~ )

| *S (L c2, ) ¢, c gy eens ) €, )
: ij.‘lJ"' ijﬂ

This combined with Proposition 2.1 proves (2.3).

If a > 2, then cg + 02 and by Karamata's Theorem, n g2 a;z -n oi a;z -
2 E Z 1[|z l > a_ ] 32, so that by the convergence of types result, (2.4)
holds. []

Corollary. The same limit law is attained in Theorem 2.2 if y(h) is replaced by

a mean corrected version

n-h
(h) - -tzl (x x)(xt+h X) where x - ; izl Xi

The proof of this corollary is analogous to that of the corollary following
Theorem 4.2 in Davis and Resnick (1984) and is therefore omitted. Also note that
the corollary remains true if E Zt ¢ 0 by considering the process Xt - E xt =

o
).

jz.., e (Z,_y - E 2.,

Corresponding to the case ¢ = 4 we have the following result.

Proposition 2.3. Suppose {xt} is defined by (2.1) with E z, = 0 and

E z 1 = L(t)

[IZ I < t]

is slowly varying with lim L(t) = =, Define e by

toro

e an ——



.ﬁ'wv-

1/2
n

2
e

aL{a ")

a

1/

so that o is regularly varying with index 1/2. If a =a 1

2 then tn R*Y
(2.5) (@ aZ(r(h) - y(W), 0 <h < 9) *N + (y(0), ..., y(W))/o2

where N 18 a N(0, 1) random variable.
Remarks. (1) Define Ll(x) = L(xllz) go that Ll is also slowly varying (de Haan,
1970, p. 21). Then a  must satisfy n Ll(an)/a: + 1. Set Ul(x) - xZ/Ll(x) 80
that l& is regularly varying with index 2 and o satisfies Ul(un) ~ n and this
shows o may be taken as the asymptotic inverse of Ul at the point n(cf. Seneta,
1976, p. 21). |

(2) For the classical result assuming E Z! < = gee Anderson, 1971, p. 478.

1
Proof. We begin by showing the analogue of Proposition 2.1. The difference

-2 - n < 2
a‘(mym - ¥ I (e, e022 )
n R 1 "i+h7 -1
is again decomposed into the pieces A + B + C + D.
We have Var(A) = 0O(n a;") . Since L(t) + = we have an/v’a + o and hence
-4 -2

na =qana -+0
n n

as desired. For B we have

E |B| < (const) n 8;2 E Izll l[lzll > anl’

Since L(t) = f; 2% P[]Z;] € dz] we have

r - . -3
Elz,| 1[|zll S f:n z plfz,] ¢ dz] f:n t™> L(dt)
= 3 f: L(s)s-a ds - L(an)a;3
n

= a2% L )] (e o) /Lla))e™ ds - 1)

®

N WP

“




A

-8- o
N
so that S
nalk lz,] 1 = n L(a )a_° {f' 3(L(a_8)/L(a ))s-4ds - 1} -
n 1 [Ile >an] n'n 1 n n : B
4 ®
: However, since n L(an)a; + 1, the above term is asymptotic to o
a T 3as)/L(a ))s™ ds - 1) S
n 1 n n R
which goes to zero since a > and the expression within the braces goes to zero by » 1
Karamata's Theorem. The term b]Cl is handled in the same way and D 1s of smaller : i
order than EIB[ so the analogue of Proposition 2.1 is proved. ﬂ !
- d
Before continuing with the proof we need the following result. ' »
1 - - 2
Proposition 2.4. Suppose {xt. satisfies (2.1) with E Zl 0 and U(t) = E z1 1”21’ <t
slowly varying. Define g, by - : 1
2 *
ng "E221 + 1.
n ~ 710z ] <8 ]
Then
. B - -
g Yx =@ c)N LA
n t cmse J
t=1 J 1
where N is N(O, 1). 1
Proof. A proof can be fashioned after the method used in Davis and Resnick (1984) ' <
to prove Theorem 4.1. We have Zl in the domain of attraction of the normal so |
f q R . .
1 that gnl ) Z; »N. Furthermore for m > 1 . J
' 1
; ' l
F -1 7 *
X, = {8, tzl 2,5 3] <m} (N, N, ...y, N) |
2m+l
in R and therefore by the continuous mapping theorem
(c_y eeerc) =X »(L  c)N. »
r m m on |j|_<_m h ]
It remains to show
| | -1 §
, (2.6) lim limsup P[|g X =~ (c_y vees €)oY (>8] =0 »
r e noZ;t m m n .
L
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i " y

for any 8§ > 0 as well as

@n  (J e Ne(] ¢
I§l<m 3 J-z--mj

IN, m + =,

The validity of (2.7) is obvious.
We have that

n n

-1 _ -1
B c21 xt - (c-m’ Tt cm) "% " g tZI ,§|>m cj Zt_j
n
-1
- z 1 -EZ
*n t.z-l [§|>m °y ey [z, 4l < &) th l”21' < 3n])

-1
+ g, n(l§|>m cj)E Zl l[lzll < gn]

-1 3
+g ( )z 1
n tzl l§|>m cj -3 [[Zt-jl g 8n]
wmqg +8 +y.
Now

1im limsup P[|a] > 61 = 0
mre e

by an argument identical to one used in the proof of Theorem 4.1 of Davis and

Resnick (1984). (We use the fact that n g;Z E Zi 1 + 1.) For the

llz,| < g2
other two terms we calculate

lE 2 = |E 2

R A P U LI P NS

' - - -1
<®lz ]| 1[|21| >5.] 7 vrdz eaq = 7 ¢ v@o
8n &n

= fm 3-2 U(s)ds - g;l U(gn)
&n

and so applying Karamata's Theorem (recall U is slowly varying) we get

) anen ) v L aaae omm aec e b snen e s e e e suee e Sieec AnacSuchii SN St R T —r ———r

s Al



VoY

i '

lim oM £ 1[|z1| <80 o
e u(s,) ’
Thus
lBl < g-l njlE 2 1 c
— 5n 1 [121! j_an [§[>m | j'
EZ 1
_n Ug,) n ! 1 [!zll 5,gn]’ e
gnz U(Sn) [3]>m 3
Z, 1
LY gn lE 1 [lzll < gn]‘l?ﬂnn lcjl/U(Sn)
+ 0 asn-+>w»,
Likewise
-1 ~1
1lim limsup P[lyl >8] <lim limsup 6§ " g " mn IE Z,1 [ [c |
e we e n 170z)] > &) !gl >m 3
=0

as desired for the verification of (2.6).

Continuation of the proof of Proposition 2.3: From Proposition 2.4 we have

(recall o2 = E zi = Var(z,))

n © ©
-1 2 2
o E Z c, € (Z ~c%) » ( z ¢, C N
N 2] e i "i+h -1 foe { “i+h

and hence from the analogue of Proposition 2.1
n a2 (v(h) - y() = (e, ¢, )N,
n 1 "i+h
The assertion of Proposition 2.3 easily follows.
Remark. The same limit law holds if ;(h) is replaced by the mean corrected version.
n

n 1 — —
v(h) = ;§ X, - NE 4 - X
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3, Sample covariance function of {Z }

Assume {Zt} is 1id and satisfies (1.2) and (1.3) with 0 < o < 2. As before,
define

(3.1) a = inf{x: P(’Zlf > x) > nul}.

Applying Theorem 4.2 in Davis and Resnick (1984) to the Zt sequence (i.e., take

¢y = 0,3 # 0 and c, = 1), we obtain

-2
a_ tzl Z 2, =S+ 0=0 forallh>0

and

-2 2

a® ] 22=s

T re}

where S is a positive stable random variable with index a/2. 1In this section,
n

we give a different normalization for the partial sums E Zt zt+h’ h> 0 in
t=1

order to get a non-degenerate weak limit., Not surprisingly, these partial sums

(i.e. sample covariances) at different lags turn out to be asymptotically in-

dependent. This will be the main building block for deriving the limit distribution

of the sample correlation function of the Xt process in the next sectiom.

Throughout this section we shall assume E Ilea = o, It then follows from
Theorem 3.3 (iv) ir Cline (1983), that the product Z0 Z1 belongs to the a-domain

of attraction. That is Zo Z1 satisfies

P(]z0 21] > tx)
(3.2) F(TZO 21[ > t)

+ X as t+>», x>0

and
P(Zo Z1 > t) , R

(3.3) 15Ty * P’ + (1-p)* ag t + o
’_(T"u’l )

where p {8 given 1in (1.3).

FE—

A4}

|-
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batine
L

" -
(3.4) a = inf{x: P(lZo le >x)>n
We first show that

(3.5) 'Iin/an + ®,

Observe that for a fixed positive number M,

p(]zo zll > t) P(lzol > t/lzll. lzll =M
POZ[ > 60 =7 P(Z [ > ©)

M P([zol > t/y)

=/ p(lz,| e dy) .
0 P(IZOI > t) 1
We then have by Fatou's Lemma and (1.2)

p(z, z,| > ¢) M
0" a
liminf P(|261 ) 3_!0 y P(Izll e dy)

f an o

and upon letting M + =, the lower bound converges to E|21|a = o, It now is easy

to check that (3.5) must hold.

n n
2
. The joint asymptotic behavior of the partial sums (tgl zt, tzl Zt Zt+1, cea
2 Zt zt+h) is handled using point process techniques. For background on
t=1

point processes, see Kallenberg (1976). Set xt = (Zt, Zt Zt+1' cees Zt Zt+h)
-1 -1 n-1 N1
for t 0, *1, +2, ... and define ?, Xt (an Zt’ a Zt Zt+1, cees @ Zt zt+h)'

The relevant sequence of point processes for this problem is given by
I -
n Z-l ea—1 X
n t

which is defined on the state space E = nzh+1

\{(0, 0, ..., 0)} where € is the
measure assigning unit mass to the point x and zero elsewhere. In defining a
point process on E, we shall use the convention that if a point falls outside
the state space it does not contribute to the sum. £ will denote the usual
product c-algebra on E modified so that the compact subsets of E are those

compact sets in Ilh+l which are bounded away from (0, 0, ..., 0).

—

9!
-

a s b - A

e o
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It will be shown that the sequence {In} converges in distribution to a

o« «©
Poisson process defined as follows: Let 2 € ay
kel jk

? e sy

TEREY EIRCY
X

Ix

e~ 8

1

be h iid Poisson process on R\{0} with intensity measure given by &(dx) =

S " -a-1 LY L g2 2
ap x 1(0’ m)(x)dx + aq (=x) 1(_m’ 0'\(3')dx where p = p¢ + (1l-p)- and
n n hs
q=1-p. Further let 2 € () also be a Poisson process on R\{0} independent
k=l j
k
of the h Poisson processes above with intensity A(dx) = c:q:ox_m_1 1(0 o)(x)dx +
9’

aq(—x)-a_l 1(_¢ 0)(x)dx. The limit point process is then
o h
-1 1 e
k=1 1=0 Jil)'si

h+1

where gy € R is the basis element with ith component equal to one and the

rest zero. In other words, the points of I are located on the coordinate axes,

ii), k=1, 2, ...} lying on the axis determined by £y-

the points {j

In order to establish In #» 1 it is convenient to first specify a class of
sets (as in Section 2 of Davis and Resnick, 1984) which generate E. Let S be
the collection of all sets B of the form

B = (bo’ c°] x (bl’ c1] X L., X (bh, ch]

which are bounded away from (0, O, ..., 0) and bi < o bi ¢ 0, ci ¥ 0 for
1 =0,1 ..., h. It is clear that S is a DC-semiring (cf. Kallenberg, 1976,

P- 3). Moreover, since B ¢ S is bounded away from zero, either

(c1) B fﬁfygi: ye R} =¢ for i=0, ..., h
or
(c2) B fﬁ{xgi: ye R = (bj, cj] i=3

¢ 143,

That is, B has either e—;*v intersection with all of the coordinate axes or

intersects exactly one in an irterval. YNote that in (C2}, bi

<0<y for i ¢ j

e o



and 0 ¢ (b,, ¢

. Further properties of these sets are developed in the

b R |

following proposition.

Proposition 3.1.

1)

(11)

(1ii)

(1iv)

Proof.

nP(e;l zl € B) >0 if B ¢ S satisfies Cl.

“P(»e;l Y, € B) > (A, ¢ ] 1f B e S satisfies C2 with] =0

X., c,]1 4if B ¢ S satisfies C2 with i & O.

33

-1 ~1
nP(en xl € Bl’ 2, xt € Bz) + 0 1if Bl and Bz €S and 1l <t<1+h.
2p(a-t -1
n P(-en 31 ¢ By Ry xt € Bz) < C for all n and t > 1 + hwhere

C is a constant depending only on the sets Bl and B2 in S.

* *
(1) Setting x = |b°| A [col >0andy = |b1| A |c1l > 0, we have
- * *
Pt ¥ € B) < nb(lz,] > ax, |2 2, >3y
< nP(ile >a M)

* *
+ nP(]le >ax, IZl ZZl > Zny , lle < anM)

From (1.2) and (3.1) we have nP(lZl‘ >anM) > M as n + « which can be

made arbitrarily small by choosing M large. The second term is bounded by

N n
a

* a * * *
wp(|z,| > ax, (2] > 2Iy <nrdlzy| > a x)R(2,] > ;i.;al_)

=

*
>+ (x)2.0=0

v
since aﬂ/an + « by (3.5).

*
(11) Suppose j = 0. Then, with x = Iboi A [col, y = min (lbil A lcil) >0

1l<i<h

and using an elementary bound, we have

-1
I“P(%n Y, € B -noP(a b <2 < anco)l

* LY
:nhP(lzll >ax, [Z1 Zzl >ay)

9!

@

L A4

.

__ F P

denenl

denchanianad e
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which goes to zero as n + ©» by the proof in (1). Moreover, it follows from (1.2)

1

is handled in the same manner and is omitted.

and (1.3) that nP(a b < Z, < ac) > J\(bo, ¢ J. The argument for the case j # 0

(1i1) 1If either B, or B2 satisfies Cl, then we are done by (i). So suppose

1
- (1) D) ) (2
B, and B, satisfy C2 with B, N £ (bj ° 144, 8,N £y = (bj' > €5 1#4.

Then 1f j ¥ 0 and }' ¥ O,

*

-1 -
(3.6) nP(en X, € B, gnl Y e B, ) g_nP(lzl z,..] > an , 2 | > 3 oY *)

1)
3

t +3j' 41+ 3, then by independence

1+j
(Z)I A [c(%)l'

t t+j

* ¢))
where x = lbj | A je;™| and y = |b Now if t # 1 + j and

Nk LY
nP([Z1 zl+jl >ax, IZt Zc+j'l >ay)

LY ] LY
nP(IZ1 Zl+j| > a x )P(lzt Z ... > ay)

t+]

»> 0.

On the other hand if t

l1+jort+3j'=1%3, then we have the bound

ne(|z, z,]| > ;nx*’ lz, Z3l > :ny*) )
< ne([z,| > a M) o
+ nP(IZl ZZI > an*, |22 Z3| > Xny*, |22| < anM) - 1
Y
< ae(lz,| > a M) + nP(|Z, 2,] >2nx*)9(|z3| > :‘::T« y)
+M® asn+o ’ 1
where we have used (3.5) in the second term. Since M is arbitrary the left side
of (3.6) must have a zero limit. The other cases j = 0 or §' = 0 are done in a
similar way. . 1
(iv) This follows easily from (i) and (i1) since for t > 1 + h the vectors
X, and X  are independent. 0
Proposition 3.2 let {71} be 1id satisfying (1.2), (1.3) with 0 < a < 2 and ’ 1
suppose E }lea == If a, ;n are given by (3.1), (3.4) we have ;
I »1
n
»




in the sense of convergence of point processes on the space E (cf. Kallenberg,
1976).
Proof. Since the point process I is simple, it suffices to show by Theorem 4.7

in Kallenberg (1976) that

(3.7) E In(B) + E I(B) <= for all Be §
and
(3.8 P(In(R) = 0) » P(I(R) = 0) for all sets R which are a finite union of

disjoint sets in S.
Clearly (3.7) is automatic from (i) and (ii) of Proposition 3.1 because I
m
has all of its points on the coordinate axes. Now suppose R = {J Bj is a union
i=1
*
of disjoint sets in S. For a fixed positive integer k, define I[n/k](R) =

[nfk]
€ _y  (R) where [x] is the greatest integer < x. Using a Bonferroni-type
t=1 @n Xt

inequality, stationarity and the disjointness of the sets Bj’ we have

m -1 n m [(n/k] -1 -1
321 [n/kIPg," Y, € By) - 1-2-1 321 cZz [a/kIP(g " ¥; € Byo Ry X € By

* n -1
< P q® > 0) < 521 (n/kIPCe, X, € By)-

it follows from above that

1

n -1 * -
] [n/kIP(g.” ¥; € B = E Ip (R +k E I(R)

i=1

as n -+ ». Applying Proposition 3.1 (1ii) and (iv), we also have

[n/k] -1 -1
1imsup [n/k]P(en X1 ¢ Bs £, X, € Bj) = 0(1/k) a8 k > =
n-w te2

for i, § = 1, ... m so that

e A
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-1 *
3. 1 -k i =
(3.9) E I(R)< liminf P(I[n/k](R) 0)

nN—>oc

1

* -—
- limsup P(I[n/k}(R) =0 < 1-k " EI(R)+o0(l/k)

e

Since the vector-valued process Xt is h-dependent, a standard argument (cf. Lead-~

better, Lindgren, and Rootzén, 1983, chapters 3 and 5) gives

k. o_*
(3.10) P (I[n/k](R) = 0) - P(In(R) =0) »0asn *»«

for every positive integer k. Taking the kth power of (3.9) and using (3.10),

we obtain

g I(R))k < liminf P(I_(R) = 0) < limsup P(I_(R) = 0)

n—)co n 0

(1-%

<@ -k EI®) + o1/k)E.

Now letting k + =, we have P(In(R) = Q) ~» e~E I(R). But T is a Poisson process

-E I(R)

so that e = P(I(R) = 0) which verifies (3.8) as desired. E

Theorem 3.3. Llet {Z )} be 1id satisfying (1.2) and (1.3) with 0 < a < 2 and E}zll" = o,

Then, if a and zn are given by (3.1) and (3.4),

@? ] 2,5 Y@z, - 1Y @z -y

. s eves

no t no2 t t+l n nox t “t+h n
»(So,sl, "’Sh)

= v caey bl
where M E Z1 22 1[’21 Zﬁl < an] and So, Sl’ sh are independent stable

random variables; So is positive with index a/2 and Sl’ Sy» +ees Sy are identically

distributed with index a.

Proof. Adapting the argument used in Section 2 of Resnick (1984) and in Section 4

of Davis and Resnick (1984) (see also Resnick and Greenwood, 1978) it is easy to

show, for any 0 < § < 1,

. ’ :
s 1 “zt' ’ a‘nG‘J ] tH ['Zt Zt*J'I 7 an”
Z Z 1 ~ ' N
EZ % fa s < ;zlzzj fan]). 1<4i<h)

-

-1

A

i J
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§ 3 [
- (So, Sl. cees Sh)
wnere 8= TGO (g and § = 2 N
k=1 U3, 1 > 83 [|Jk | > &)
~ 8 6 8
- f s A(ds) for i =1, 2, ..., h. C(Clearly, S, S,, ..., S, are independent
o 1 h
lsl e (6, 1]
0
since the points {j( )] {jél)}, cvey {Ji )} are independent. The Ito representation

§
implies Si »-Si as § ~ 0,1 =0, 1, ..., h (cf. Resnick, 1984) where the vector
(So, Sl, ceny sh) is as described in the statement of the theorem. In view of

Billingslev (1968), Theorem 4.2, the proof is complete once we show

n

(3.11) gig lti;::up E(a :-2-1 22 ltlz | <a a]) = 0.
and
n
(3.12) :ixon 1t1:§up Var(a t.-Z-l 2, 2oy lllzt Zt+1| ignﬂ) =0,1i= 1, ..., h.

The expectation in (3.11) is equal to LI, Z 1 which has the desired

a2
n

[Izl<

limit by Karamata's Theorem (Feller, 1971, p. 283). Since the process
{Zt Z . t =0, %1, 22, ...} 1s i-dependent, (3.12) holds by the comment on the
top of p. 266, Davis (1983). []
Remarks.
1) If the distribution of Zt is symmetric then so is the distribution of
Zt Zt+1 in which case M, = 0.

2) TFor 0 < a < 1, the theorem remains valid without centering the terms

Zt zt+i by By

-y
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3) In the case 1 < a<2, E Z1 Z2 = (E Zl)2 exlsts and from Karamata's Thenrem,

=2 =2
na (E(Z1 22)- un) =na E(Z1 22 l[!zl Zzl N 2 ])* const. Thus, by the

convergence of types result, Theorem 3.3 is also valid if ML 15 replaced by

2 2
u (E Zl) .

4. Sample correlation function of {X }

As before let {Zt} be iid satisfying (1.2) and (1.3) with 0 < o < 2,

E thla = », and define

4.1) Xt = jz—wcj zt—j

where

4.2) I leyl®ly) <= wienfse1  ifa>1
Jm—eo

0<6<a 1fa < 1.

We shall first concentrate on the unadjusted sample correlation function defined

by
~ C(h)
(4.3) o(h) = Eioy h>0
where
' n
(4.4) C(n) = tzl X, X p

The sum in (4.4) is terminated at n rather than n - h for notational simplicity
in the following arguments. All of the results in this section, however, remain

valid if the upper limit is n - h. Put g(h) = 2 cj Cj+h/2 cg, which in the case
3 Jj

that Var(Zt) < o,  1is equal to Corr(xt, xt+h
it was shown under condition (1.4) that p(h) ¢ o(h). Here, we consider the limit
distribution of ;(h), suitably normalized. We begin with the following proposition

which 13 similar to Lemma 8.4.3 in Anderson (1971).

). In Davis and Resnick, 1984, Theorem 4.2

t-

L.
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Proposition 4.1. Assume (4.1), (4.2) and Elzll° = ». Then for every positive

integer h,

nel gt _ -1 7 _ P
(4.3 a " a2 () - p(h) - [C(0))] :21 1%3 eylegy —epZ_ 2, )0
143

where a_ and :n are given by (3.1) and (3.4), respectively.

Proof. We have

p(h) - p(h) = [(C(0)T™L (C(h) - p(h)C(0))

n
- tco1t 3

( c, c, 2 A -~ p(h) c, c, 2 z )
o1 } § 1 %3 “t-t “t+h-3 ~° ; § 1 %3 “t-1 “t-3

-1
[C(0)] tzl g g ci(cj+h ey p(h))zt-i Zt-j

so that the difference in (4.5) is equal to

1 a2 co1t f Y (e, 2, = c2p(h))z?
n n tel 1 i "it+h i t-1

-3l a2 (1Y (e, e, - c2o(h) § 22_)
n “n £ 01 S TP L Ty

=3l a2 @1ty (e ey, - c20(hN f 22 +u_ )
n °n £ %1 Saen 1° pep t omd

n-{

n
D) 22 - ] 22 ig the sum of at most 2i random variables. Since
tal-i © =1 ©

where Un,i

a;Z C(0) converges in distribution (Theorem 4.2 in Davis and Resnick, 1984) and
- c2 =
§ (ci Cith cip(h)) 0 it suffices to show

8/2 <

®,

(4.6) limeup E|} (c, ¢ - c¢2p(h))U
e 1 i "i+h i n,1i
s defined in (4.2). Because § < a, E!ZIIG < =, go that by the triangle inequality

and assumption (4.2), we have

LA—.L‘AA
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5/2
EIE (eg Sy = iU, ]

< ey g%+ ey *lom(®/Dely 1872

1872 4 lcilslo(h)lalz)(zlilslzllﬁ)

bt ; Ueg ey

and by the Schwartz Inequality this is bounded by
S 8 8
< 2212, "1 Ie,f lif>*<§ eyl S12D % + zo<h>zc’2<§1citfiz>]
< oo

by assumption 4.2, Thus (4.6) follows since the bound does not depend on n. [I

Proposition 4.2. Assume (4.1), (4.2) and E[ZIIG = o, Then

n

-2 2 3 -2
(4.6) a~% (ceo) - c, 22 ) =a
n tzl 1Z—m ied n tzl i.4

143

P
C1 (:j Zt_i Zt-j &> 0.
Proof. The proof of Proposition 2.1 can be adapted to this case but a simpler
argument is given here instead. Choose 0 < § < a satisfying (4.2) with o < 26.

The triangle inequality gives

E[a-z ? X c, ¢, 2 A [6
nopal 4, 1731 "t-1 "t-)
143

- 8
< a2 izj le, cj|ézyzl z,|
1#j
-26 6,2 8,2
<ma (z te, 17y 2™ .

Now since a is regularly varying with index l/a, ais is regularly varying with

index 26/a > 1, and hence n 3;26 + 0. U

Rearranging the terms in the sum (4.5), we have
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n
RS cqleym = <:._l£'»(h))Zt__i 2y " tzl § j;o c,(ey_ ~j+h " jp(h))zt § Zemgag
i%3
4.7) - a

where wi,j = ci(ci-j+h - ci_jp(h)), 1i=0, 1, %2, ..., §J =21, £2, ...

Proposition 4.3. Assume (4.1), (4.2) and E[Zlfa = o, As n—+ « we have

-1
M (tzl(i V1,9 Zeeg Zee1ey ¥ ; Vi, Ze-1 Ze-1-3)

n
- + Z 2
; (g3 * ¥y, y) tzl e Zeay) >
for each j > 0 and

n
an  at() jez -14

n
and therefore a (C(O) - 2 i z Zi)

Proof. (i) Interchanging the order of summation and regrouping terms, the

difference in (i) becomes

yly "t 3 ) P ]
a v ( z 2z - ) 2.2z_..)+a v ( z z . .- 2z ..)
n § 1,3 te1-1 © t+j cwy © tH] n g 1,-3 gal-i-§ t Tedy gyt t+]

-1 =1
2 g ¥1,50,1 ¥ 2, z V5,3 n,1

nii E ngi-j §
where V - zZ 2 - Z 2 and W = 2 2 - Z 2z .
LR TP s - B L T ny v otH

However with § as chosen in (4.2)

Wi

-y
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8 c 8 )
limsup Elz Y \'j [ < limsup ) 'y f ElV [
o RETE LI SR TRRE 1 n,i
<23 lu, 8ulRlz (817,10 < =

=54 Ly S | 2

Vel P =1 p
whence a \Y .

n § wi,j n,i 0 The same argument also gives a, ; wi,-j n,i >

which proves (1).

(i1) The above argument also works in this case but with § replaced by

8§/2. The last statement follows from Proposition 4.2. D

-]

Theorem 4.4. Suppose X = z c, 7 where {c,} satisfies (4.2) and {7 }
Iheorem 4.% t i 3Tt 3 t

gatisfies (1.2), (1.3) and EIZ]_[(l =w, 0 <qa <2, If a and gn are given by

(3.1) and (3.4), then for any positive integer 2,

4.8) Gl a2GMm) -om -4 /C0), 1<h<R) = (Y, Yy, euny ¥)

h,

o

A
in R”, wh = h -§) -2 2 .
n where dy jzl (o (h+§) + p (h-]) o(j)o(h))g 2 EZ 2, 1(121 Zzli?‘nl

Yh = jzl (o (h+3) + p(h-3) - Zo(j)p(h))Sj/So and So’ Sl. Sys ... are independent

stable random variables as described in Theorem 3.3 (i.e. So is positive with

index a/2 an?d Sl’ 82, ... are identically distributed with index a). In addition

if efther

(1 0<a<1lor

(i1) a = 1 ané¢ the distribution of Zt is symmetric or
(11i1) l<a<2and EZ =0

1
then (4.8) holds with dh n = 0, h=1, ..., ¢ and a location change in the Si's,

?
j> 1.
Obgerve that since both a and ;n are regularly varying with index l/a, the

normalization ai/;n is aL:» regularly varying with index l/u. That is,

-y

-
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.
a:/ﬁn - Y(n) for some slowly varying function Y. : .
X
Proof. From Proposition 4.3, Theorem 3.3, and the continuous mapping theorem, 3
we have for any fixed positive integer m, ’
-2 -1
(4.9) (a_“ co), & 3 2 Q ¥, 42 2, 0= u)))
n n 0<|j|<m tel 1 i, t-i t-i+j] n i
= o
. 4
; > R .+
g Qs j.z.l 0,5 * by, P89 |
where wo- E Z Z [[Z | < ';n]. The dependence of wi,j on h is temporarily ’ ]
F guppressed. The plan of the praof is to first show that (4.9) remains valid with
m replaced by » and then make use of Propositions 4.1 - 4.3 to derive the weak
limit of 5.1 a2(p(h) - o(B) - g a/CO). -
»
To establish the limit in (4.9) with m replaced by « it suffices to show
(cf. Billingsley, 1968, Theorem 4.2) that
(4.10)  1lim limsup P(?i;ll ) § 1.4@ey L “n)l >y) =0 » )
me M [§]>m te1 1 103
for every vy > 0 and
m bt 4
4,11 ( + S, » + S, »
N A LRIV R A TR j
The limit in (4.11) can be checked using characteristic functions since ]
b a
2 l}: (‘”1,3*“’1,-3” < w, As for (4.10), we have the bound » ‘
J=1 1 :
A=-1 by
P Z - >
CH ,§,>m c§1§ i j( t-i “t-i+j udl >
'
<P(aIZ DD TUPLC A A v o= w )| > v/2) ]
15]>m t=1 & ¥1,3%e-1 fetny Trl2 Zy g4yl <81 T ]
9
+p(§"1[2 ?{w z .2 1 v s y/2) |
n 1 iom el i 1,3 “t-1 “t-1+) [z . zt_i+j[ > a] y .

= A+ B.




Applying Chebyshev's inequality to A gives, after some simplification, (see the

proof of Proposition 2.1),

A< a2 y? IXI ; ) ) o, .ICly o
P og=1¢=11i|il>m|5'lom 143 s-t+i,}
*Waorrog, g b ¥ Paceengr 3ol ¥ Waicrigug 500

where oi = E]Zl Z2 2 g 7 A change of variables in the summation

1
tz) 2z, <&

Ia

gives the bound

o

-2 n-2 bt
A<by"dn] ]
n ts=0 j=- !§I>m ’j'!)m

| 2
]wi,j} (,wt+i,j'! + 'wt+i—j,j'l + 'wt+i+j',j'l + !wt+i—j+j’,j'l)°n

o0 -3
and since tz—w [¢t+k,j'l = tZ—m lwt,j'[ for all integers k,
-2 n=2 T 2
A<4y T a a4} ) lwi,j’) og.

i=-= |j|>m

The absolute summability of the cj

Moo {j'>m P

Theorem (;;2 n cﬁ + a/(2-a)), we have lim limsup A = O.
me e

With § as given 1in (4.2)

§ =8 n-§ 8 3
B <2 v a n 2 2 [y, | EIZ Z 1 v
n !j’>m i 1 172 rlzl 7‘2l ? an]
and again by Karamata's Theorem, n 3;5 E:Zl 22]6 l[lzl 22[ 5 : 7 +> af(a - 8)
' n

gso that lim limsup B = 0 which established (4.9) with m replaced by ~.
me e

Now from Proposition 4.1 and (4.7), we have

n

~
- ~i+

140 r=1 1.1 t=f Tr-i4i

's ensures that all of the above sums involving

‘wi j‘ are finite and in particular lim X 2 [wi j' = 0. Thus by Karamata's

-1 - -] -1 . .
a” el (oh) - o)) =a " al@on ) 7 Yu, 7 2+ o, (1.

‘.1
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Since Z (wi j + wi —j)/ 2 ci =p(h + j) +pCh - j) - 20(j)e(h), we then have
i * * i

=1 .
a af\(p(h) - p(h) - dh,n/C(O))

n
=312 -1 -
=a " a2 (C(0)) ij‘o tzl § by 1 Zeg Zeogay T b))+ 0 (D).

It follows by applying the continuous mapping theorem to (4.9) that

n-1 - ° ,
a a2 o) -po() - ¢ /C(0) = <jzl g oy y* vy, 84/ gci s,)

= Yh.

The proof of the joint convergence in (4.8) is essentially the same as
the above argument. The only difference is that the vector in (4.9) is extended
h
to an f+l~dimensional vector where the (h+1)t component is given by

n
g-l 2 Z 2 W(h) (z

4 -u),h=1,2, ... ¢. !
T 0c)i|<m =1 1 1,3 n ’

t-i Ze-it

Finally, the last statement of the theorem is an immediate consequence of

Remarks 1 - 3 in Section 3. []

In the following two results, we consider the limit laws of the mean cor-

rected version of the sample correlation function defined by

n f - — n =y2 i
p(h) = (X, - X)X - X)/ l X, - X) :
tel t t+h o1 t i

n
where X = z Xt/n.
t=1

Corollary 1. Suppose 1 < o < 2. Then for any positive integer £,

Gl a2 - o)), L h <) » (Y, Yy, weny YD,

Proof. Since the function g(h) is location invariant, we may assume without loss
of generality that E Zt = 0 (otherwise consider the process xt - E Xt =
o«

) cj(zt-j - E zt-j))' In view of Theorem 4.4, it suffices to show

j--a

)

.l

L

[1 R
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n

N ~ - n — -
p(h) - p(h) = op(;n a “). Using the identity ) Xi - 2 (X, - X)2 =n Xx°,

n t=1 t=1 °©

we have
(4.12 B(h) - o(h " I tz' T T2
.12) e(h) - p(h) = (p(h)n X° - X Ly xt+h)/t2;1 (Xt - X)“.

n
In Section 4 of Davis and Resnick (1984), it was shown that 2 (Xt -X)? = Op(a:).
t=1

n
;¥ 0 and ) Xegn/n+ EX

n ~ —
Z X =0(a) =o0 (Z ) and o (h) E p(h). Since X E X
t=1 ° pn pn t=1

1

a.s. by the ergodic theorem, this implies g(h) - ;(h) = op(';n a;Z) as desired. []
In the 0 < a < 1 case, the sample mean plavs a dominant role in determining

the limit distribution of g(h). In order to describe this result, it is necessary

to first define two random variables. Let {jk: k= 1, 2, ...} be the points of

-1

a Poisson process on R\ {0} with intensity A(dx) = ap x &7 1(0 m)(x)dx +
*

ctq(—x)“c‘_1 1(_°° 0)(x)dx where p and q are given in (1.2). Now if 0 < a < 1, then
H4

@© oo -4

z ljk! < » a,s. so that the random variables S = 2 jk and S = 2 ji are

k=1 k=1 k=1

well-defined. In particular, S and So each have a stable distribution with
index o and a/2 respectively.

Corollary 2. Suppose 0 < a < 1. Then for any positive integer £

(@M - o), 1<h <) » (o) -1, 1chen)(c)? 2/ e s)
i i

Remark. Some picnerties of the distribution function of SZ/So are studied in
Logan et al (1973). See also Cline (1983).

Proof. Let {jk} be the points of a Poisson process as described above. Using an
argument similar to that given in Section 4of Davis and Resnick (1984) (sec alsc

Resnick, 1984, Section 4) it is easy to show

0

v
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|
%13 @l ] X, al ] & - B2 = e 5 3 <Z e2)( Z 3,20

F D= RS | i k=1 k=1
! - 2
| <<§ c)s, (E cD)s.).
|
- Now rearranging the identity in (4.12), we have h
SUPINC AR S))
@16 aG® - e = aG®) - o)) + 2EW: 1’“f v —i -
{ ) X, - X) I & -0
; t=1 t=]
b
i: By Theorem 4.4 the first term is 0 (a anz n) =0 (1) since a < 1. The third

2 _
term in (4.14) 1s also negligible because nX = Op(a ), ( z (Xt -X)) 1
t=1

0 (a ), and Z (X, - X + ) = 0_(1) so that the product of the three terms is
j=1 3 ¥ P

op(a:ll) = 0,(1). As for the middle term,

2
. 2 M -1 e 9
n(D(h) - l)nX i

»

_ g s
tzl (x, x) ¢ %1%

follows from (4.13) and the weak consistency of S(h). Finally the joint
convergence in the statement of the corollary is clear. []

We close this section with a comparison of the standard result for the
correlation function in the finite variance case and Theorem 4.4. Assuming that

Zt has a finite variance and a zero mean, Theorem 8.4.6 of Anderson (1971) gives
n*(o(l) - 0(1), 0(2) = 0(2), .e., P(R) - p(2)) "(Vl, V2. ceey VQ)

where the limit vector has a multivariate normal distribution with mean zero and

covariance matrix given by Bartlett's formula

= 7 (p(g+i)o(h+) + p(g-3)p(h+3) - 20(3)p(g)p (h+])

j-—a

rgh

- 20(Nph)p(g+)) + 207 (3)o(g)o(h)).




However, by checking covariances the components in the limit vector may be

written as
o

(4.15) Vv, = § (p(h+)) + p(h-)) - 20(p (S, h= 1, 2, L., 8
i=1

where {Sj} is a sequence of iid N(0, 1) random variables. This corresponds to

the numerator portion of the limit in Theorem 4.4 with a = 2. In fact, Sj may

n
be identified as the weak limit of c:hzn.;i Z Zt zt+j’ j=1, 2, ... . Moreover,
t=1

n o
in the finite variance case, the sample variance n”1 z Xi z 2 Cs Var(Zl) >0
t=1 j-—oo

n L -]
whereas a 2 z X2 » z ¢2 S in the 0 < a < 2 case. This phenomenon accounts
no t oo i o

for the division by S° in Theorem 4.4 and not in (4.15).

5. Examples

In this section, we consider applications of Theorem 4.4 to some time series
models. Throughout this section, assume the hypotheses of Theorem 4.4 are met
and, for simplicity, suppose the distribution of Zt is symmetric. We then have

6.1 o fL@em -em) » T () + oG-h) - 251 m)S

/s
3=1 3e

where %(n) 13 a slowly varying function and Sl’ Sz, «e. is now an iid sequence of
symmetric a~stable random variables, independent of the positive a/2-stable
random variable So'

The numerator .{ the limit in (5.1) is also a symmetric a-stable random

variable with characteristic function given by

[ -]
(5.2) expl- [ Jo(hts) +p(3-h) = 26(Po(m)|*ie]
j=1
Extending the notion of variance for a Gaussian random variable, Stuck (1978)

defined the dispersion ot a random variable with characteristic function (5.2)

by

P SR S e

PRI |
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|
{ (5.3) disp = Z [p(h+1) + p(j-h) - ZO(J)O(h)lm ‘
, i=1 ]
(see also Cline, 1983). The limit in (5.1) is then equal in distribution to ® 'j
L (disp)lla Sllso' Notice that upon setting a = 2 in (5.3), we get the asymptotic

variance of p(h) in the traditional finite second moment setting.

1) MA(q). Suppose (Xc} is the finite moving average ®

Xe =2 40,2 )+ 40,2 .

Then, since p(h) = 0 for [hl > q, we have for h > q
L@ G - o) » @ 423 [o(p)|H o s,/s, .
j=1

r

2) Estimation of & in a MA(1). For the MA(1l) process Xt =t ezt_l, p(l) =

'

8/(1 + 62). A method of moments type estimator for 6 is found by solving the [ ]
latter equation for 8. Choosing the solution with the constraint |6 < 1 (cf.

Fuller, 1976), gives

(- Q- 402)%/(20) 1f 0< [p] < .5 -
6 = -1 ; <=5
1 b > .5
where ‘; = ;(1). Letting 2(p) denote the inverse of the function 68/(1 + 02) .

with }el < 1, we have by the mean value theorem

6 -6 =86) - 86) = &' (GG - 0) + 0 (5 - 0).

Hence

o Uy 6 - ) » (1 - 07h (14 80 (@ - 2200 + @B 5 s,

The dispersion of the numerator of the limit simplifies to

4O a 2.0
(L +6) +ﬁ£°} Q+6°) . Again note by setting o« = 2, we obtain the asymptotic
(1 - 8%)"
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variance of 8 (cf. Fuller, 1976, p. 343).

3. AR(1). Let {xt} be the AR(1l) process X, = ¢X _; +2_where '¢! < 1. 1In this

(n]

case, p(h) = ¢ and estimating ¢ by ¢ = p(l), we have

2l Ty - 0) w (T (61 4 o371 - 2pdgyy /e g

/s
3=1 °

1

=_1."_9i_, s./S
a - ¢a)1/a 1'%

4. Yule-Walker estimates. The Yule-Walker matrix equation for the AR(p)

= ee + - - 2 _ . _ 4 2P
‘model X oy X1 + ¢p xt—p Z,, assuming 1 4, 2-¢, % ¢p £ 0

lz] <1, is

(5.4) Ro=p

n

where R 18 the p x p matrix [p(1 - §)] » = (¢1, veey ¢p)'
i =

and R = (), ... p(p))'. The Yule-Walker estimate of $ is then defined as
n

the solution of (5.4) with R and R replaced by i = [p(1 - ] and
1,3=1

g = (p(1), ..., p(p))', respectively. As in Yohai and Maromna (1977), for
n
P - -1 z = =
h Z € R° define 'b(,-\f) R(,e) 2z where R('\,) [zli'“]i,jﬂ and z = 1. Since
R'g R and R 1s non-singular, this implies W(Q) is well defined for large n.

~

The mean vclue theorem then gives

$-$=D(-p)+ op(g - R) ]

— r‘v-—

where D 1 “he p x p matrix of partial derivatives of ¥ evaluated at (. Consequently, 4
1/av :
nTny (g - ¢) =D Y
x

where z = (Yl’ Y2, s ey Yp)' with Yh = jzl (p(h-‘_.j) + p(h-j) - 20(j)D(h))Sj

W

/so ] 1

h=1 ..., p.

|-
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